

RS Schraubenspindelzähler

RS Volumensensoren messen den Volumenstrom nach dem Schraubenspindelprinzip. Ein im Gehäuse sehr präzise eingepasstes Rotorenpaar bildet das Messwerk. Die Messwerkdrehung wird über ein integriertes Zahnrad berührungslos von einem Signalaufnehmersystem erfasst und in digitale Impulse umgewandelt.

Die Rotorenflanken bilden mit den Gehäusewänden abgeschlossene Messkammern, in welchen die Flüssigkeit von der Einlass- zur Auslassseite transportiert wird.

Die innerhalb einer Hauptrotorumdrehung durchgesetzte Flüssigkeitsmenge bildet das Rotationsvolumen. Dieses wird durch das Abtastzahnrad unterteilt und im Sensormodul digitalisiert, aufbereitet und ausgegeben.

VORTEILE

Hohe und weitestgehend viskositätsunabhängige Genauigkeit

Pulsationsfreie Messung

Niedrigste Druckverluste

Geringe Ansprechzeit durch innovatives Rotorprofil und reduzierte Massen

Höchste Funktionalität durch intelligente Sensorik Schonende Messung des Fluids

VOLUMENSENSOR-AUSWAHL

Für einen störungsfreien und sicheren Betrieb der Volumensensoren ist die richtige Auswahl (Auslegung) von Typ und Baugröße entscheidend. Aufgrund der Vielzahl verschiedener Anwendungen und Volumensensor-Ausführungen sind die technischen Daten im VSE Katalogmaterial allgemeiner Art.

Bestimmte Eigenschaften der Geräte sind abhängig von Typ, Baugröße und Messbereich sowie von der zu messenden Flüssigkeit. Für eine exakte Auslegung kontaktieren Sie bitte VSE oder einen unserer Vertriebsund Servicepartner.

ERLÄUTERUNG ZUM SENSORSYSTEM

Das berührungslose Aufnehmersystem besteht aus 2 GMR- Brücken (sin/cos), welche sich in einer Sensoreinheit in Cartridge-Bauweise befinden. Diese detektiert die Bewegung des Abtastzahnrades und gibt die sin/cos-Signale an die Vorverstärkerelektronik weiter.

Die Sensorsignale werden in der Vorverstärkerelektronik digitalisiert und verstärkt sowie durch einen hochauflösenden Interpolator einstellbar vervielfacht. Die Rechtecksignale sind bidirektional und können von allen Auswertegeräten sowie von Computern und SPS-Steuerungen ausgewertet werden.

Die Auflösung ist zwischen dem Faktor 1 bis 128 in Schritten wählbar.

Für den Fall einer 1-kanaligen Auswertung steht ein separates Richtungssignal zur Verfügung.

Ein einstellbarer Impulsfilter kann z.B. durch Schwingungen erzeugte negative Durchflüsse bereits im Gerät verrechnen und unterdrücken.

Die Frequenz der Ausgangssignale ist proportional zum Durchfluss (Volumenstrom) und abhängig von der jeweiligen Volumensensor-Baugröße. Der Frequenzbereich erstreckt sich von 0 ... 100 kHz. Der Vorverstärker ist gegen Verpolung und falsches Anschließen geschützt. Er ist für eine Medientemperatur von -30°C ... +120°C (mit HT-Sensor für einen Bereich von -40°C ... +210°C) geeignet und direkt am RS Volumensensor montiert.

Mit der Herausgabe dieses Kataloges erlöschen sämtliche Angaben aus früheren Publikationen. Änderungen und Abweichungen bleiben VSE vorbehalten. Für mögliche Druckfehler übernimmt VSE keine Haftung. Vervielfältigung, auch Auszüge, sind nur nach schriftlicher Genehmigung durch VSE gestattet. Stand: 10/2023

TECHNISCHE DATEN ÜBERSICHT

Bau- größe	Messbereich (Q _{max.}) L/min.	RV cm ³ /U	VE cm ³ / Imp.	K-Faktor* Imp./L min.	K-Faktor* Imp./L max.	P max. bar	Filtrierung µm
RS 40	0,04 – 40 (50)	8,37	0,31	3.226	413.000	450	100
RS 100	0,50 – 100 (120)	15,7	0,5815	1.720	220.000	450	250
RS 400	1,00 – 400 (525)	56,6	3,138	318	40.800	450	250
RS 800	4,00 – 800 (1.000)	180,0	10	100	12.800	450	500
RS 2500	10,00 – 2.500 (3.000)	666,0	37	27	3.459	40	500

^{*}einstellbar

FREQUENZBEREICH

bis zu 100 kHz, einstellbar

MESSGENAUIGKEIT

± 0,5% (1%)** vom Messwert bei Viskosität > 21 cSt.

WIEDERHOLUNGSGENAUIGKEIT

± 0,05 % unter gleichen Betriebsbedingungen

**RS 800 RS 2500

WERKSTOFFE

GG-AUSFÜHRUNG

EN-GJS-400-15 (EN 1563)/16 Mn Cr 5 oder 1.4112 (je nach Baugröße)

E-AUSFÜHRUNG

Edelstahl 1.4305/1.4112, weitere auf Anfrage

LAGERUNG

Mediumbedingt als Wälzlager oder SSIC-/ Wolframkarbid-Gleitlager

DICHTUNG

FPM (Standard) auf Wunsch PTFE, NBR, EPDM

MEDIUMTEMPERATUR

-40°C ... +210°C (HT-Ausführung) -30°C ... +120°C (Standard)

VISKOSITÄTSBEREICH

1 ... 1.000.000 cSt.

EINBAULAGE

Beliebig über wählbare Anschlusseinheiten auch kundenspezifisch

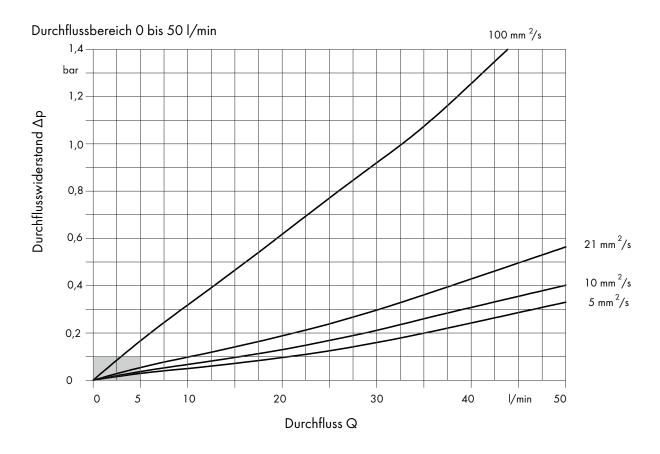
VERSORGUNGSSPANNUNG

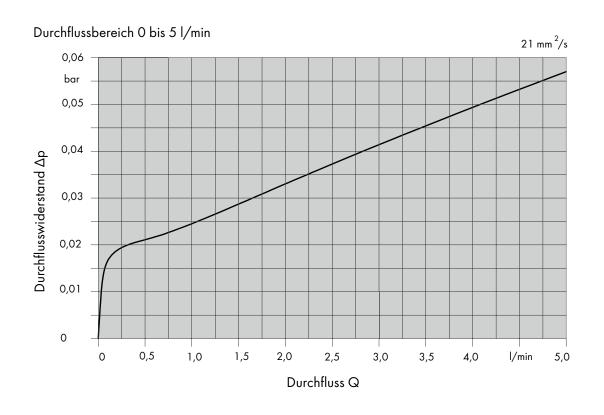
10 ... 28 VDC

STROMAUFNAHME

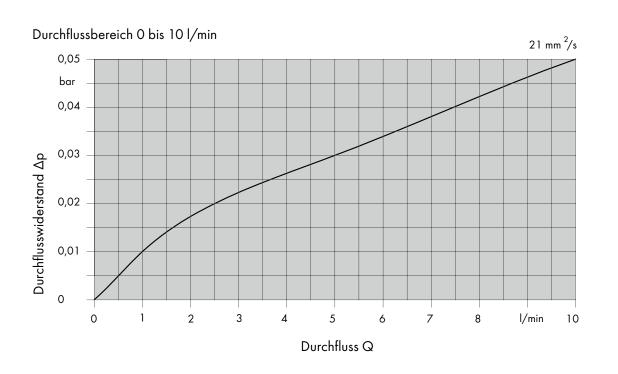
65 mA bei 24 VDC unbelastet

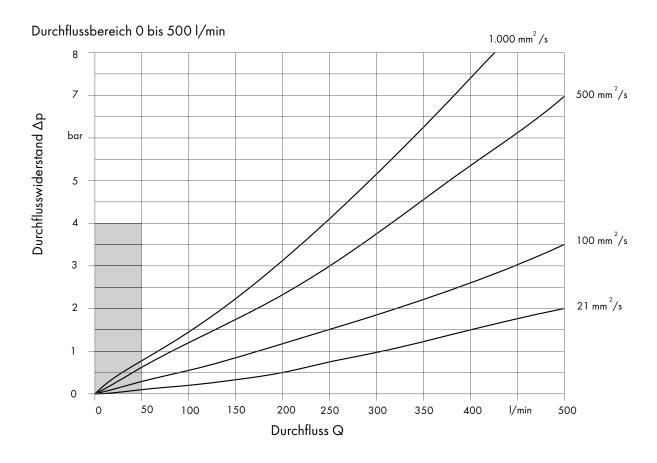
VERZÖGERUNGSZEIT

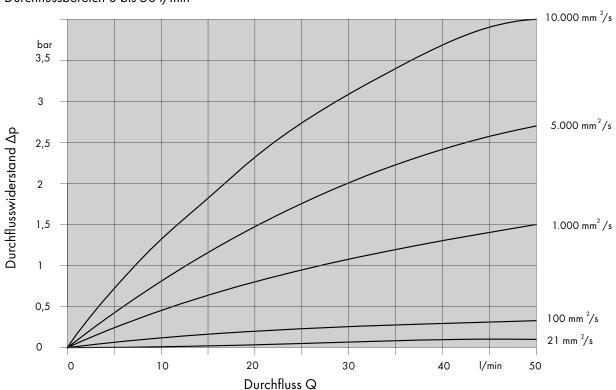

≤ 8 µs

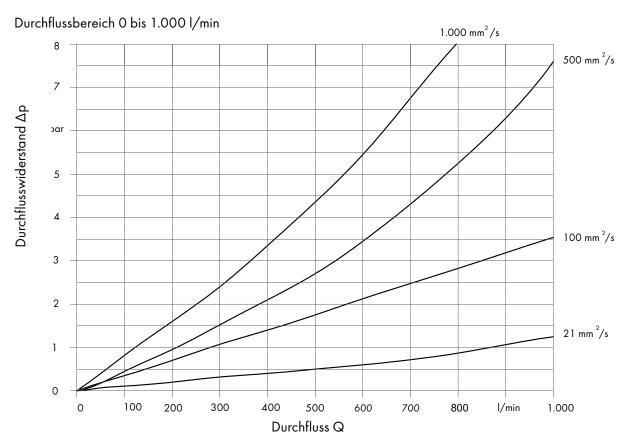

SCHUTZART

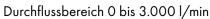

IP 65

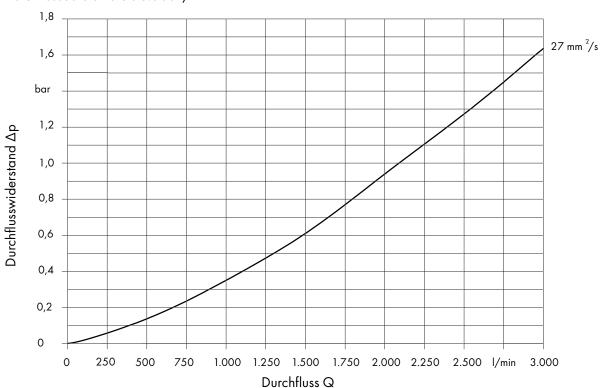

EX-SCHUTZ

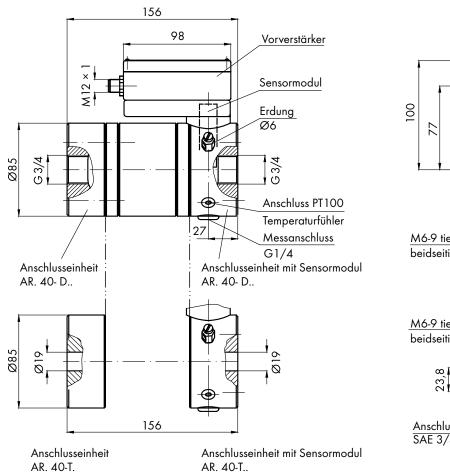

Schutzart Eigensicherheit in Vorbereitung

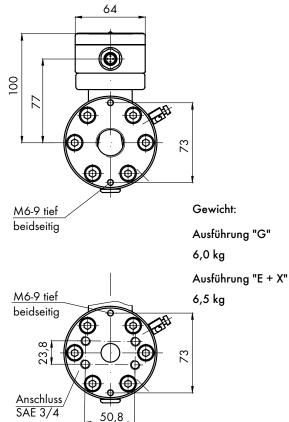


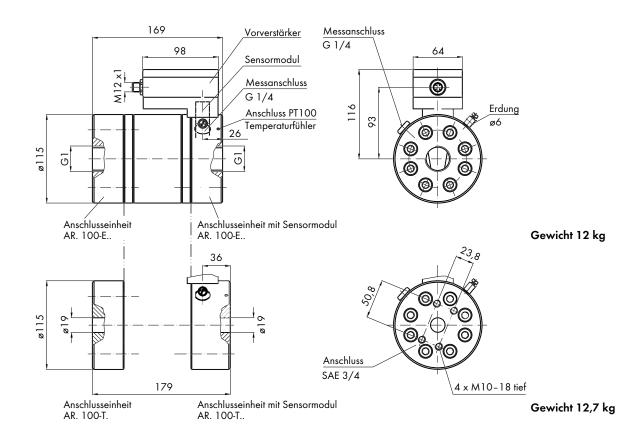




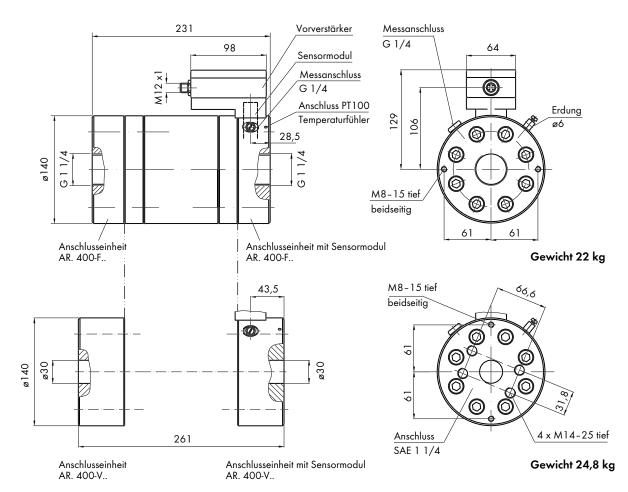


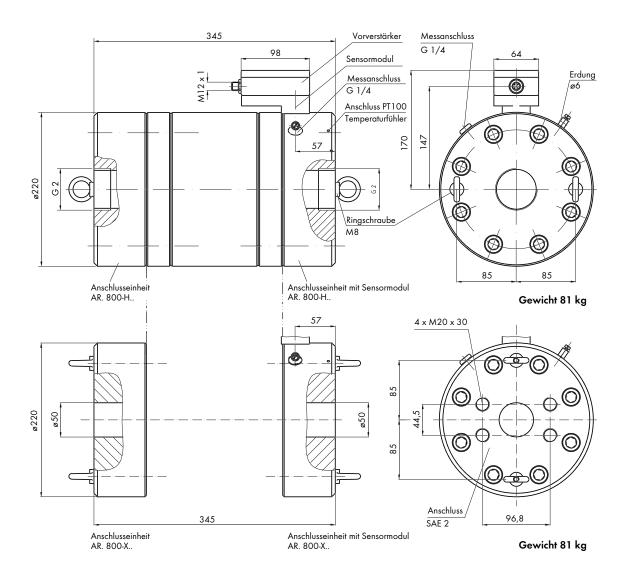


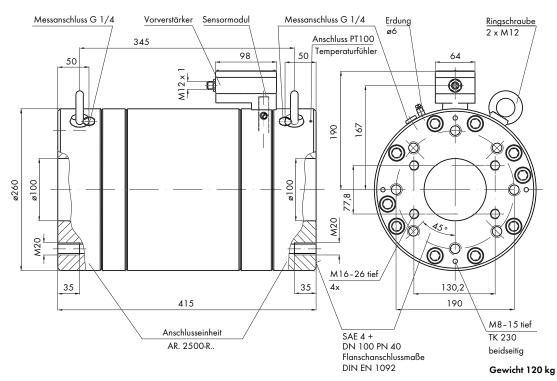


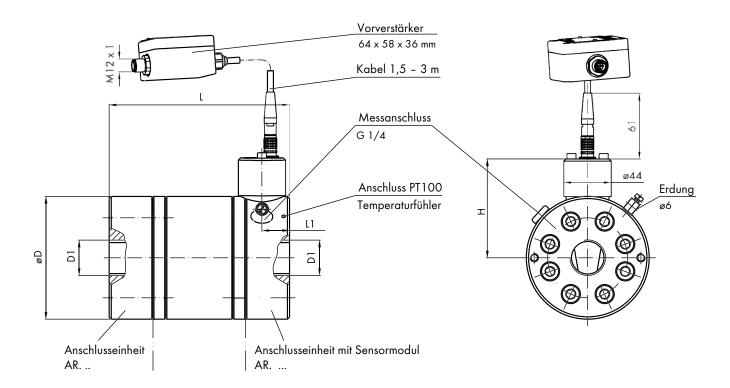


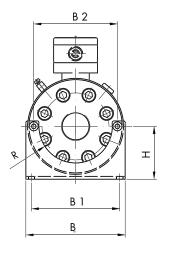
RS 40

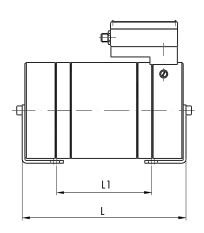


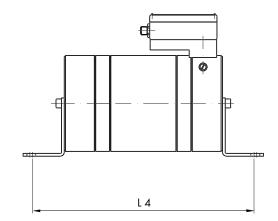

RS 100

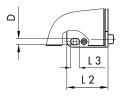


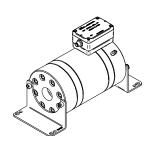

RS 800

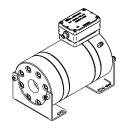


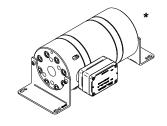



RS Hochtemperatur




Baugröße	Ø D	D 1	L	L1	н
RS 40	85	G 3/4 SAE 3/4	156	27	78,5
RS 100	115	G 1	169	26	93,5
	113	SAE 3/4	179	36	73,3
RS 400	140	G 1 1/4	231	28,5	106
K3 400		SAE 1 1/4	261	43,5	100
RS 800	220	G 2	345	57	147
	220	SAE 2	343	37	147
RS 2500	260	SAE 4 +	415	84	167,5
	200	DN100 PN40	410	04	107,3





*Alternative Winkelbefestigungen nicht für alle Anschlussgrößen möglich

Baugröße	Anschluss	В	B 1	B 2	R	Н	L	LI	L 2	L 3	L 4	D
RS 40	G 3/4 SAE 3/4	85	73	73	30,5	49	164	107-113	35	9,5	207-213	6,5
DC 100	G 1	100	104	100	41	<i>2 A</i>	177	97–105	50	13	241-249	9
RS 100	SAE 3/4	120	104	100	41	64	187	107–115	50	13	251-259	
RS 400	G 1 1/4	145	129	122	53,5	77	239	139–14 <i>7</i>	60	13	323-331	9
K3 400	SAE 1 1/4						269	169-177	00		353–361	
RS 800	G 2	225	209	180	<i>7</i> 6	117	353	193-201	90	13	497–505	0
K2 800	SAE 2	225	209		70	117	333	193-201	90	13	497 – 303	9
RS 2500	SAE 4 + DN 100 PN 40	265	240	230	100	142	425	235–245	110	16	595-605	11

SENSORMODUL

BESCHREIBUNG DER SENSORELEKTRONIK

Mit einem speziellen Sensorsystem wird jegliche Bewegung des Rotorenpaars bzw. der Flüssigkeitssäule erfasst. Hierzu wird ein Präzisionszahnrad, welches mit einer Welle des Rotorenpaares verbunden ist, über einen speziellen magnetoresistiven Aufnehmer abgetastet. Der Abtastsensor beinhaltet 2 GMR-Brücken (sin/cos) und ist mit einer Signalaufbereitungs- und Verstärkereinheit in einem auswechselbaren Edelstahl-Cartridge-Gehäuse untergebracht.

Die nachgeschaltete Elektronikeinheit verfügt über einen hochauflösenden sin/cos-Interpolator, welcher mit zehn unterschiedlichen Auflösungsfaktoren einstellbar ist. Des Weiteren gibt es einen programmierbaren Signalfilter, welcher unerwünschte negative Impulsfolgen bis zu einem einstellbaren Grad verrechnen kann. Zusätzlich wird ein Signal für eine separate Richtungserkennung z.B. für den Fall einer 1-kanaligen Auswertung von der Elektronik zur Verfügung gestellt. Optional kann dieser Ausgang zur Erkennung von Durchfluss- und Temperatur-Überschreitungen genutzt werden.

LEISTUNGSMERKMALE

Einstellbare Interpolationsfaktoren IPF: 1; 2; 5; 10; 25; 32; 50; 64; 100; 128

Einstellbare Impulsfilterung: bis 22% Rotationsvolumen

Einstellbare Vorzugsrichtung für Filterungsverfahren

Generierung von Frequenzen bis 100.000 Hz

Ausgabe eines separaten Richtungssignals oder Fehlersignals (wählbar)

Automatischer Offsetabgleich der GMR-Sensorbrücken (Sinus, Cosinus)

Erkennung von Sensorabriss oder Sensorfehlern/ Polradbeschädigungen

Durchflussüberlasterkennung mit Speicherung

Übertemperaturerkennung mit Speicherung

Erkennung von Übertretung der max. zulässigen Höchstfrequenz (>100.000 Hz)

Ablesbarer Fehlercode über LEDs

STROMVERSORGUNG

Versorgungsspannung

U = 10 ... 28 VDC; verpolungssicher

Stromaufnahme

 $I_0 = 65 \text{ mA}$ (bei 24 VDC); unbelastet

Verzögerungszeit

 $t_V = 8 \mu s \text{ max.}$ (zwischen Abtastung und Messwert)

SIGNALAUSGÄNGE

Ausgangssignalform

Quadratursignale (A, B mit 90° Phasenverschiebung)

Richtungsausgang

Positiv high (24 V); Negativ low (0,8-1 V)

Fehlerausgang

Aktiv high (24 V); Inaktiv low (0,8-1 V)

Max. Ausgangsfrequenz

100 kHz

Signalspannung-Ausgang

(Kanal 1; Kanal 2; Direc/Err) U_{SS} = 9 ... 27 VDC

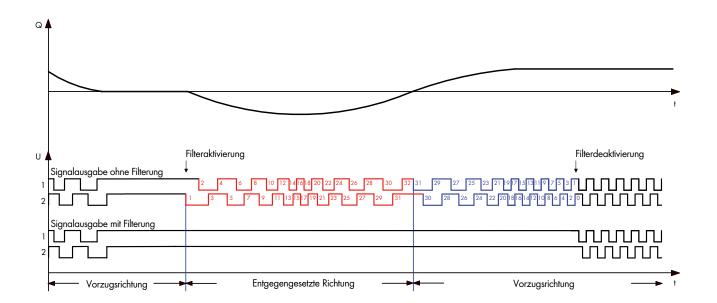
Signalausgangsstrom

(Kanal 1; Kanal 2) I_{OUT} = 300 mA max. bei 24 VDC

Ausgangsendstufen

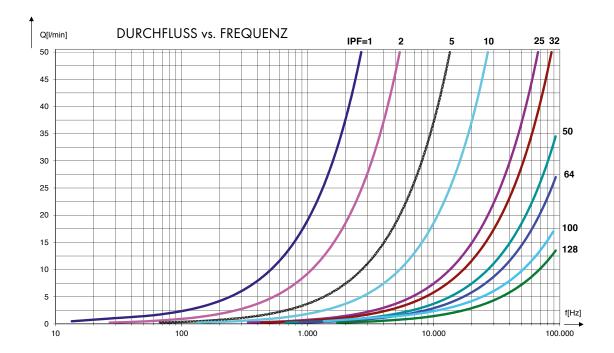
Push-Pull-Endstufen; strombegrenzt; kurzschlussfest; interne Kabelanpassung; kleine Sättigungsspannung; Temperaturschutzschaltung mit Hysterese; hochohmige Ausgänge im Fehlerfall

PRINZIP DER IMPULSFILTERUNG

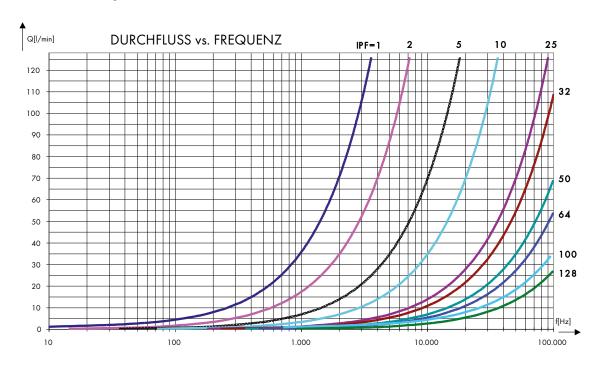

Schwingungen in Fluidsystemen äußern sich durch ständige Vor- und Rückbewegungen der Flüssigkeitssäule, welche von den Rotorsensoren ebenfalls erfasst und in proportionale elektronische Impuls- bzw. Flankenfolgen umgewandelt werden. Diese generierten Impulse können von der nachgeschalteten Auswerteeinheit oder Regelung falsch interpretiert werden und somit sehr störend für den jeweiligen Betriebsprozess sein.

Mit der Signalfilterfunktion werden diese generierten Flanken während der schnellen Vor- und Rückwärtsbewegungen des Rotorenmesswerks kontinuierlich von der Elektronik intern verrechnet. Währenddessen werden die Signale an den Kanalausgängen unterdrückt, bis die interne Verrechung ausgeglichen bzw. die Ausgangsposition des Rotorenmesswerks wieder erreicht wurde.

Der Anwender hat die Möglichkeit über Drehcodierschalter den Grad der Filterung in Form von Teilvolumina einzustellen.

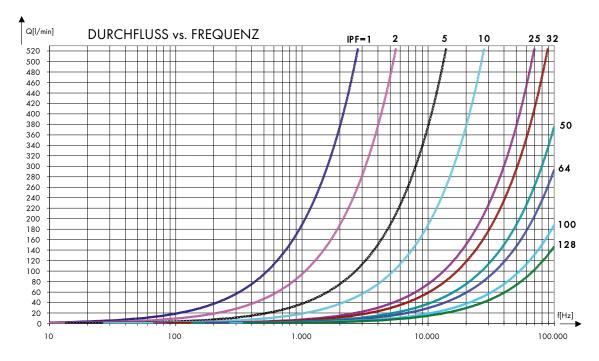

UNTERDRÜCKTES VOLUMEN BEI IMPULSFILTERAKTIVIERUNG [ml]

Filterstellung	RS 40X	RS 100X	RS 400X	RS 800X	RS 2500X
0	0	0	0	0	0
1	0,0775	0,145375	0,7845	2,5	9,25
2	0,155	0,29075	1,569	5,0	18,50
3	0,2325	0,436125	2,3535	7,5	27,75
4	0,31	0,5815	3,138	10,0	37,00
5	0,3875	0,726875	3,9225	12,5	46,25
6	0,465	0,87225	4,707	15,0	55,50
7	0,5425	1,017625	5,4915	17,5	64,75
8	0,62	1,163	6,276	20,0	<i>7</i> 4,00
9	0,6975	1,308375	7,0605	22,5	83,25
10	0,775	1,45375	7,845	25,0	92,50
11	0,8525	1,599125	8,6295	27,5	101,75
12	0,93	1, <i>7</i> 445	9,414	30,0	111,00
13	1,0075	1,889875	10,1985	32,5	120,25
14	1,085	2,03525	10,983	35,0	129,50
15	1,1625	2,180625	11,7675	37,5	138,75

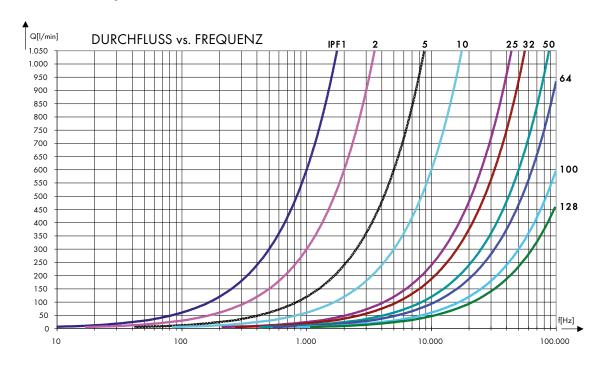


TECHNISCHE DATEN

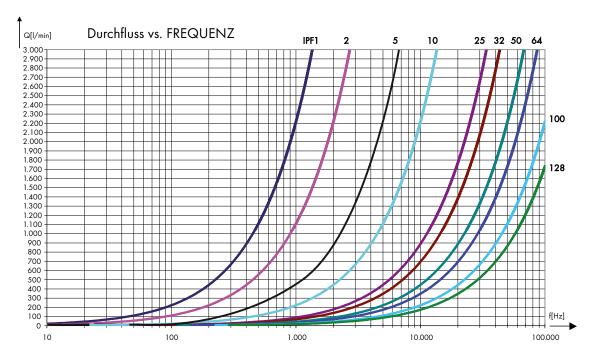
RS 40Maximal zulässiger Durchfluss 48 I/min
Minimal zulässiger Durchfluss 0,04 I/min



RS 100 Maximal zulässiger Durchfluss 126 l/min Minimal zulässiger Durchfluss 0,25 l/min



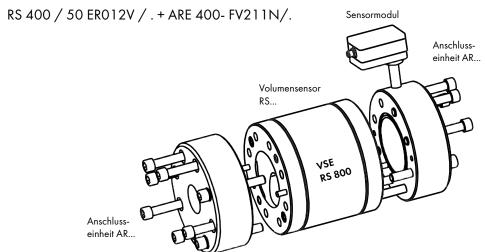
RS 400Maximal zulässiger Durchfluss 525 I/min


Maximal zulässiger Durchfluss 525 I/min Minimal zulässiger Durchfluss 0,5 I/min

RS 800 Maximal zulässiger Durchfluss 1.050 l/min Minimal zulässiger Durchfluss 5 l/min

RS 2500 Maximal zulässiger Durchfluss 3.000 l/min Minimal zulässiger Durchfluss 10 l/min

Beispiel


RS 800	/	50		G	R	0	1	2	٧		НТ	/	Χ	Volumensensor	+
				Dichtungs Australia Austra									werksseitige Festlegung		
					Bunb	Lagerung	Spiel	V P T E B		FPM (NBR (PTFE EPDM EPDM Silikor	Perb	unan)			
				e Fest		2			ndard						
			#	Anschlussart	werksseitige Festlegung	1 4 6 7	6 Hartmetall-Gleitlager						r		
				Werkstoff		U Standard									
		Interpolation		S	R	_									
				E	EN-GJS-400-15 (DIN EN 1563)) Edelstahl 1.4305 (V2A) Edelstahl 1.4571 (V4A)										
Ваидгаве		1 2 5 10 25 32 50 64 100 128	auswählbarer Interpolationsfaktor												
RS 40 RS 100 RS 400 RS 800 RS 2500															

Beispiel

Anschlusseinheit

AR	G	800	-	G	٧	2	0	0	Ν	/	Χ				
		nschluss						Sonderausführung		X Baureihe		derungskennzahl rksseilige Festlegur	ng		
							Insch	Ansc	Ν	St	andaro	ł			
						lubo	Messanschluss	0					or PT 100 PT 100		
				O H H O Anschluss	gsart	Dichrungsort N ← Sensormodul	0 1 2		mit ei	hne Messanschluss nit einem Messanschluss G 1/4 nit zwei Messanschlüssen G 1/4					
					Dichtur			Senso Senso	ormoo	lul G lul G	SM 01 SM 02	- nic + Sen	ht mehr gültig sormodul RS / HT		
		Baugröße			V P T E B		NBR PTFE EPD/	И И - 41	ounan						
					0	3/4 3 1 3 1 1,	/4	H I R	2000	100	P16 PN40	T V X Y	SAE 3/4 SAE 1 1/4 SAE 2 DN 20 PN10	Z Q Q1 Q2	SAE 4 DN 50 PN40 DN 80 PN40 DN 100 PN10
inheit	Werkstoff	40 100 400 800 2500													
Anschlusseinheit	G	10,100,00	EN-GJS-400-15 (DIN EN 1563) Edelstahl 1.4305 (V2A)												
Ans	X	92365000	stahl												

Bestellbeispiel

VSE Volumentechnik GmbH Hönnestraße 49 58809 Neuenrade / Germany Phone +49 (0) 23 94 / 6 16-30 info@vse-flow.com www.vse-flow.com

